

Android ATC © 2013 I

Java Fundamentals for Android™ Development

version B

Copyrights © 2013 Android ATC

Published by : Android ATC

First Printing October 2013.

ISBN : 978-0-9900143-1-7

Information in this book, including URL and other Internet Web site references,

is subject to change without notice. Complying with all applicable copyright laws is

the responsibility of the user. Without limiting the rights under copyright, no part of

this document may be reproduced, stored in or introduced into a retrieval system, or

transmitted in any form or by any means (electronic, mechanical, photocopying,

recording, or otherwise), or for any purpose, without the express written permission

of Android ATC company.

Android ATC company is not responsible for webcasting or any other form of

transmission received from any linked site.

Android ATC company is providing these links to you only as a convenience, and the

inclusion of any link does not imply endorsement of Android ATC of the site or the

products contained therein.

Android ATC company may have patents, patent applications, trademarks,

copyrights, or other intellectual property rights covering subject matter in this

document. Except as expressly provided in any written license agreement from

Android ATC company, the furnishing of this document does not give you any

license to these patents, trademarks, copyrights, or other intellectual property.

Warning and Disclaimer:

This book is designed to provide information about Java fundamentals for Android
development course. Every effort has been made to make this book as complete and
as accurate as possible, but no warranty or fitness is implied.

Trade Mark Acknowledge :

All terms mentioned in this book are known to be trademarks or service marks have

been appropriately capitalized. Use of a term in this book should not be regarded as

affecting the validity of any trade mark or service mark.

Android ATC © 2013 II

Android is a trademark of Google Inc. The Android robot is reproduced or modified

from work created and shared by Google and used according to terms described in

the Creative Commons 3.0 Attribution License.

Feedback Information:

As Android ATC, our goal is to create in-depth technical books of the highest quality

and value. Each book is crafted with care and precision, undergoing rigorous

development that involves the unique expertise of members from professional

technical community .

Readers' feedback is natural continuation of this process. If you have any comments

regarding how we could improve the quality of this book, or otherwise alter it to

better suite you needs, you can contact us through email at : info@androidatc.com.

Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance

Android ATC Team.

Android ATC © 2013 III

Table of Contents

Introduction ... 1

Intended Audience ... 1

Lesson 1: Java Basics ... 3

Introduction ... 3

Java Programming Language .. 3

Java Virtual Machine ... 3

JDK and JRE .. 3

Setting up your machine for Java programming ... 4

Hello World in Java ... 5

Using a text Editor .. 5

Using an IDE .. 6

Java Primitive Data Type .. 7

Naming ... 7

Arrays ... 7

Control Flow ... 8

If/Else and Switch .. 8

Switch statement .. 9

While loop ... 9

For Loop ... 10

Lab 1 ... 11

Lesson 2: Object Oriented Programming .. 18

Introduction ... 18

Object Oriented Programming ... 18

Objects .. 18

Classes .. 18

Getters and setters .. 19

Android ATC © 2013 IV

Inheritance ... 20

Keywords this and super .. 21

Interface .. 21

Access Modifiers ... 22

Constructors ... 22

Method overriding and overloading ... 23

Polymorphism .. 23

Lab 2 ... 26

Lesson 3: More Java Programming ... 30

Introduction ... 30

Exceptions .. 30

Java Collections .. 32

Interfaces .. 33

Implementations .. 33

Lab 3 ... 37

Introduction ... 42

Nested Classes .. 42

Benefits of inner classes ... 42

Class Variables (static) ... 43

Class Methods .. 44

Enumerated types .. 44

Serialization.. 45

Deserializing ... 46

Lab 4 ... 48

Android ATC © 2013 V

Android ATC © 2013 1

Introduction

Since the Android software development kit (Android SDK) is built in Java programming

language, this book serves as a mini-course made up of three lessons on the fundamentals of Java

programming.

The course will teach you the basics of Java programming language and object oriented

programming (OOP) concepts required for the development of Android applications.

If you are already an experienced Java programmer who wants to learn development of Android

applications, you can skip reading this book and move directly to reading the book titled

“Android Application Development” – a companion to the Android application development

course. For everyone else, reading the book and practicing its exercises is a must. It will simply

prepare you for Android development.

Intended Audience

This book is for anyone interested in learning the basics of Java programming language, but

ultimately looking for learning Android application development. All professionals seeking a

certification in any Android-related course provided by Android ATC, should thoroughly

understand the contents of this Java crash course.

Although there is no specific Android ATC exam tied to this course, taking any other Android

programming course (like AND-401) requires sufficient knowledge the contents of this course.

Android ATC © 2013 2

Lesson 1: Java Basics

Introduction

Java programming language

Java Virtual Machine

JDK and JRE

Setting up your machine for Java programming

Hello World in Java

Using a text Editor

Using an IDE

Java Primitive Data Type

Naming

Arrays

Control Flow

If/Else and Switch

Switch statement

While loop

For Loop

Lab 1

Android ATC © 2013 3

Lesson 1: Java Basics

Introduction

This lesson introduces the Java programming language. It starts with the basic syntax of the

language, and ends with a guide on setting up your machine for Java and Android programming.

Java Programming Language

Java programming language was originally developed at Sun Microsystems and released in 1995.

Java applications are typically compiled to byte code (class file) that can run on any Java virtual

machine (JVM) regardless of the operating system running on it. Java is a general-purpose,

object-oriented language. It was designed to let developers "write once, run anywhere" (WORA),

meaning that code that runs on one platform does not need to be recompiled to run on another.

Java is, one of the most popular programming languages in use.

Java Virtual Machine

The Java virtual machine (JVM) is the component of Java framework that executes the compiled

Java code. When a developer compiles a Java file successfully, the Java compiler produces a

bytecode file and has a .class extension. A Java byte code is an intermediate language produced

by a Java compiler and only executed on a JVM.

JDK and JRE

To be able to start programming in Java, a developer needs to main components: Java

development kit and Java Runtime environment. The development kit (JDK) provides a Java

Android ATC © 2013 4

compiler in addition to other tools. These tools allow a programmer to write Java code and

convert it to a bytecode file to be executed by a JVM. The program that compiles Java code is

javac. The Java Runtime environment is the execution environment for Java programs. These

programs are compiled into a portable binary format (.class files) by the compiler – a program

called java.

If you install on your machine the JRE, then your system can run Java programs. To start writing

Java programs you need to setup JDK as well.

Setting up your machine for Java programming

To Start Java Programming, you should install the Java development kit on your machine. You

can do so by downloading it from Java SE downloads webpage on Oracle.com – the owner of

Java. Make sure to download the correct version compatible to your machine (32bit or 64bit

installer). After downloading the installer and setting up your machine, you’ll get the following

message:

To verify you have successfully installed JDK on your machine, do the following:

1. Open a command prompt by clicking start run, then typing cmd

2. In the windows that opens, type java –version.

3. You should information similar to the following:

Android ATC © 2013 5

Hello World in Java

We will see in this section how to write a hello-world program in Java using a plain text editor

(like Notepad) or an integrated development environment (like Eclipse).

Using a text Editor

1. Open a simple text editor (like Notepad), and type the following Java code:

public class AndroidATCLesson1 {

public static void main(String[] args) {

 System.out.println("Hello World from Android ATC!");

}

}

2. Save the file as Lesson1.java under the path c:\.

Notice that the file name is the same as the class name in the code.

3. Open a command prompt and compile the code by typing javac

AndroidATCLesson1.java

4. If you don’t see any error displayed by the compiler, it means the compile is successful

and you can run the program. To run it type java AndroidATCLesson1

5. The line “Hello World from Android ATC!” should be printed.

Android ATC © 2013 6

Once you compile a Java file successfully, another file of extension .class is

created. This is the byte code file that is executed by JVM.

Using an IDE

An integrated development environment (IDE) is an application that provides a set of tools to

help a developer accomplish many tasks more efficiently. The following steps describe how to

create, compile and run the simple Hello-World Java program using the Eclipse IDE.

1. Create and Eclipse project which will contain Java file. Click on File New Java

Project.

2. Enter project name then click Finish.

3. On the left pane, under Package Explorer, expand the project then right click on src.

4. Move cursor to New, then click on Class

5. In Name field, enter the class name: Lesson1.java then click finish

6. In the file editor, the file Lesson1.java will open. Type in the same code as the previous

section.

7. Click on the Run button.

8. The “Hello World!” should display in the Console view.

Android ATC © 2013 7

Java Primitive Data Type

All variables in Java must be declared before they can be used. This is done by specifying the type

of the variable and the variable’s name:

int someVar = 1;

Java supports eight different primitive data types:

1. byte: The byte data type is an 8-bit signed integer.

2. short: The short data type is a 16-bit signed integer.

3. int: The int data type is a 32-bit signed integer. It has a maximum value of

2,147,483,647.

4. long: The long data type is a 64-bit signed integer.

5. float: The float data type is a single-precision 32-bit floating point.

6. double: The double data type is a double-precision 64-bit floating point.

7. boolean: The boolean data type has only two possible values: true and false.

8. char: The char data type is a single 16-bit Unicode character.

Naming

Java has the following rules and conventions for naming variables:

 Variable names are case-sensitive

 Beginning with a letter, the dollar sign "$", or the underscore character "_" is allowed

 Subsequent characters may be letters, digits, dollar signs, or underscore characters.

 By convention, you should name your variables using “camel case”, i.e. if the name

consists of only one word, it is all lowercase letters. If it consists of more than one word,

the first letter of each subsequent word is capitalized.

 Also by convention, constants are all capitalized and contain underscore.

Arrays

Arrays are containers that hold a fixed number of values of a certain type. The length of an array

is fixed and is declared when the array is created.

To declare and array of ten integer elements:

int[] myArray = new int[10];

Android ATC © 2013 8

Each item in an array is called an element, and each element is accessed by its numerical index.

Index numbering in arrays begins with 0. The 10th element, for example, is therefore accessed by

index number 9. You can assign a value to an array element using the following syntax:

The following program, Lesson1Array, creates an array of integers, puts some values in it, and

prints each value to standard output.

class Lesson1Array {

 public static void main(String[] args) {

 // Allocate memory for 5 integers

 int[] anArray;

 anArray = new int[5];

 // Initialize elements

 anArray[0] = 10;

 anArray[1] = 20;

 anArray[2] = 30;

 anArray[3] = 40;

 anArray[4] = 50;

 System.out.println("Value at index 0: " + anArray[0]);

 System.out.println("Value at index 1: " + anArray[1]);

 System.out.println("Value at index 2: " + anArray[2]);

 System.out.println("Value at index 3: " + anArray[3]);

 System.out.println("Value at index 4: " + anArray[4]);

 }

}

Control Flow

Statements in Java code are executed sequentially - from top to bottom- in the order that they

appear. However, a programmer can control the flow of execution using conditional

statement, loops, and branches. This section describes the usage of decision-making statements

(if/else and switch), loops(for, while), and the branching statements

(break,continue, return) .

If/Else and Switch

If/else statements tell your program to execute a certain section of code only if a particular

condition is true.

if (someExpression)

 statement1

else

 statement2

Android ATC © 2013 9

If someExpression evaluates to true, then statement1 is executed. If someExpression evaluates

to false, then statement2 is executed.

Switch statement

Unlike if/else statements, the switch statement can have a number of possible execution paths. A

switch works with the byte, short, char, and int primitive data types.

The following is an example of switch statement that prints outputs based on the age variable:

int dayOfWeek = 1;

String dayString="";

switch (dayOfWeek) {

 case 1: dayString = "Monday";

 break;

 case 2: dayString = "Tuesday";

 break;

 case 3: dayString = "Wednesday";

 break;

 case 4: dayString = "Thursday";

 break;

 case 5: dayString = "Friday";

 break;

 case 6: dayString = "Saturday";

 break;

 case 7: dayString = "Sunday";

 break;

 }

System.out.println(dayString);

While loop

A while loop statement continually executes a block of code while a particular condition is true.

Its syntax can be expressed as:

while (expression) {

 statement(s)

}

Android ATC © 2013 10

Expression is a statement that must evaluate to a Boolean value (either true or false). If it

evaluates to true then the following block will execute repeatedly until expression becomes false.

The following code snippet will print out the value of variable counter 10 times until it become

equal to 11:

int counter = 1;

while (counter < 11) {

 System.out.println("Count is: " + counter);

 counter++;

}

For Loop

The for statement provides a compact way to iterate over a range of values. Programmers often

refer to it as the "for loop" because of the way in which it repeatedly loops until a particular

condition is satisfied. The general form of the for statement can be expressed as follows:

for (initialization; termination-condition; increment) {

 statement(s)

}

The following code uses the general form of the for statement to print the numbers 1 through 10

to standard output:

for (int i = 1; i <= 10; i++) {

 System.out.println("Value of i is: " + i);

}

Android ATC © 2013 11

Lab 1

Objectives Create a new Java project under Eclipse

 Practice control statements in Java

Pre-requisites

You need to create a new Java project under

Eclipse before solving these exercises. Follow

the steps in the section below.

Android ATC © 2013 12

Creating a Java project

Create a Java project under Eclipse following these steps

1. Open Eclipse IDE.

2. On the File menu, point to New, and then choose Java Project.

3. In the New Java Project Dialog, enter AndroidATCLesson1 in Project name field.

Android ATC © 2013 13

4. Click on Finish, keeping all values as default.

Now you will have a new empty Java project created.

Exercise

Write the Java code that prints numbers from 1 to 10, each on a separate line.

In this exercise, you will create a new Java project under Eclipse and write required code then run

the program.

 Create a Java project under Eclipse

Follow the steps from 1 to 4 in section “Creating a Java project” above.

 Create a Java package

a. In the Navigator view to the left of you Eclipse editor, right click on folder src

b. In menu that shows up, point to New, and then choose Package.

Android ATC © 2013 14

c. In the “New Java Package” dialog, type in the field Name the following:

com.androidatc.lesson1

d. Click on Finish

 Create a Java class to write your code in

a. In the Navigator view to the left of you Eclipse editor, right click on folder src

b. From the menu that shows up, point to New, and then click on Class

Android ATC © 2013 15

c. In the “New Java Class” Dialog, type Exercise1 in field Name, click the checkbox

next to “public static void main(String[] args)”

d. Click on Finish

Android ATC © 2013 16

 Write the Java code to solve the exercise

a. Eclipse automatically generates the following code and puts it in file Exercise1.java

b. Inside method main(), type the following lines of code:

for (int i=1; i<=10; i++) {

 System.out.println(i);

}

c. Click on save button to save your file.

 Run your Java program

a. Right-click on the project name under the Navigator pane.

b. In the Menu that shows up, point to “Run As”, then click on Java Application

Android ATC © 2013 17

c. Check the console view. You should see the numbers printed out

Android ATC © 2013 18

Lesson 2: Object Oriented Programming

Introduction

Java is an object-oriented programming (OOP) language. This lesson will cover the basic

principles and features of OOP and provides some code examples.

Object Oriented Programming

Java is an object oriented programming (OOP) language. It shares with other OOP languages the

same concepts and features. This lesson will introduce you to objects, classes, inheritance, and

interfaces.

Objects

An object is a software bundle of related state and behavior. Software objects are often used to

represent real-world objects we find in real life. Objects are essential to understanding object-

oriented programming. Real world objects share two characteristics: state and behavior. For

example, a car has a state (current model, maker, color) and behavior (driving, changing gear

…etc.)

Building your code into a separate software object provides many benefits, including code re-use,

information hiding, ease of debugging…etc.

Classes

A class is a prototype from which objects are created. This section defines a class that models the

state and behavior of a real-world object. Classes provide a clean way to model the state and

behavior of real world objects.

Two main properties of define a class: a set of member variables (also called fields), and a set

of member methods (or functions).

Methods and functions means the same thing in the context of object oriented

programming and they are used interchangeably in this course.

To represent an object’s state in classes, add member variables to a class. Behaviors of objects are

represented using methods. The following is a simple Java class called Vehicle.

Android ATC © 2013 19

class Vehicle {

 int speed = 0;

 int gear = 1;

 void changeGear(int newGear) {

 gear = newGear;

 }

 void speedUp(int increment) {

 speed = speed + increment;

 }

 void printStates() {

 System.out.println(" speed:" + speed + " gear:" + gear);

 }

}

The state of the Vehicle object is represented with the variables speed and gear. The behavior of

the object can be changed using the two methods changeGear() and speedUp().

Getters and setters

A set of methods are usually created in a class to specifically read/write the values of member

variables. These are called getters - used to get the values – and setters – used to change the

values of member variables.

Getters and setters are crucial in Java classes as they are used to manage the state of an object.

In the Vehicle class provided previously, we can add two methods (a getter and a setter) for each

member variable. The following is the full code of the class after adding the getters and setters:

class Vehicle {

 int speed = 0;

 int gear = 1;

 // Start of getters and setters

 public int getSpeed() {

 return speed;

 }

 public void setSpeed(int s) {

 speed = s;

 }

 public int getGear() {

 return gear;

 }

 public void setGear(int g) {

 gear = g;

 }

 // End of getters and setters

 void changeGear(int newGear) {

Android ATC © 2013 20

 gear = newGear;

 }

 void speedUp(int increment) {

 speed = speed + increment;

 }

 void printStates() {

 System.out.println(" speed:" + speed + " gear:" + gear);

 }

}

You can let Eclipse generate getters

and setters for you. Right click inside a

class code and choose Source then

Generate Getters and Setters, as

in the screen capter:

Inheritance

Inheritance provides a powerful and natural mechanism for organizing and structuring your

software. It set a parent-child relationship between two different objects.

Object-oriented programming allows classes to inherit commonly used state and behavior from

other classes. In following example, Vehicle becomes the parent (superclass) of Truck and Car. In

the Java programming language, each class is allowed to have one direct superclass, and each

superclass has the potential for an unlimited number of subclasses.

public class Car extends Vehicle {

 int numOfSeats;

 //Set of statements defining

 //a car’s state and behavior

}

public class Truck extends Vehicle {

 public int loadWeight;

 //Set of statements defining

 //a truck’s state and behavior

}

The Car and Truck now share the same state and behavior defined in class vehicle.

Android ATC © 2013 21

Keywords this and super

Two Java keywords you might encounter when writing you class code with inheritance: this and

super. Keyword this is used as a reference to the current class itself, while super is a reference

to the parent class that this class inherent from. In other words, super is used to access

member variables and methods of the parent class.

Keyword super is especially useful when you want to override a superclass's method in a child

class but you want to invoke the superclass’s method. For example, in class Car, you can override

method printStates() and call Vehicle’s printStates():

public class Car extends Vehicle {

int numOfSeats;

void printStates() {

 super.printStates();

 System.out.println(" Number of Seats:" + numOfSeat);

}

}

Calling Car’s printStates() method will invoke first Vehicle’s printStates(),

then the print out statement.

Interface

An interface is a contract between a class and the outside world. When a class implements an

interface, it must provide the behavior specified by that interface. Let’s take the Vehicle example

above, and create an interface for it.

public interface IVehicle {

 void changeGear(int newValue);

 void speedUp(int increment);

}

Then the Vehicle class implements the IVehicle interface using following syntax:

class Vehicle implements IVehicle {

 int speed = 0;

 int gear = 1;

 public void changeGear(int newValue) {

 gear = newValue;

 }

 public void speedUp(int increment) {

 speed = speed + increment;

 }

 void printStates() {

 System.out.println(" speed:" + speed + " gear:" + gear);

 }

}

Android ATC © 2013 22

Note that class Car must provide and implementation for methods changeGear() and speedUp().

Access Modifiers

Access modifiers determine whether other classes can use a particular field or invoke a particular

method. There are four types of access control:

 At the class level—public, or default (no explicit modifier).

 At the member level—public, private, protected, or default (no explicit modifier).

A class may be declared with the modifier public, in which case that class is visible to all classes

everywhere. If a class has no modifier (the default), it is visible only within its own package

(packages are named groups of related classes.)

At the member level, in addition to the public modifier or no modifier (package-private), there

are two additional access modifiers: private and protected. The private modifier specifies that the

member can only be accessed in its own class. The protected modifier specifies that the member

can only be accessed within its own package and, in addition, by any other subclass of its class.

Access Levels

Modifier Class Package Subclass
All

Other

public Y Y Y Y

protected Y Y Y N

Default Y Y N N

private Y N N N

Constructors

Constructors are invoked to create objects. They are similar to functions but differentiated by the

following:

 Constructors have the same name as the class

 They do not have any return type.

Calling a constructor to create a new object would initialize an object’s members. Suppose

Vehicle has the following constructor:

Android ATC © 2013 23

public Vehicle(int s, int g){

 speed = s;

 gear = g;

}

Creating a new object of type Vehicle would require invoking the constructor with the new

keyword:

Vehicle vehicle = new Vehicle(4, 2);

This line will create an object of type Vehicle and has its two members speed and gear initialized

to 4 and 2 consecutively.

Method overriding and overloading

Within the same class, you can create two methods of the same name but differs in the number of

arguments and their types. This is called method overloading. Note that changing the return type

alone is not allowed to overload a method. You should change the parameters signature if

needed.

Method overriding occurs when a class inherits a method from a super class but provides its own

implementation of that method. In the following code, class car overrides method speedUp()

defined in class Vehicle.

public class Car extends Vehicle {

 int numOfSeats;

 public void speedUp(int increment) {

 speed = speed + increment + 2;

 }

}

Suppose you create an object of type car and called the speedUp(). Then, the Vehicle’s method is

ignored and the one inside class Car is executed:

Car car = new Car();

car.speedUp(2);

Polymorphism

In the context of object-oriented programming, polymorphism means that different subclasses of

the same parent class can have different behaviors, yet share some of the functionalities of the

parent class.

Android ATC © 2013 24

To demonstrate polymorphism, we will add method showInfo() to class Vehicle. This method

prints all info in an object of type Vehicle:

public void showInfo() {

 System.out.println("The vehicle has a speed of: " + this.speed

 + " and at gear " + this.gear);

}

However, if the Truck subclass uses this method, the member variable loadWeight will not be

printed out, since it’s not a member of the parent class Vehicle. We resolve this, we can override

method showInfo() as follows:

public void showInfo() {

 super.showInfo();

 System.out.println("The truck has is carrying a load of: "

 + this.loadWeight);

}

Notice that Truck’s method showInfo(), will call the parent’s showInfo() and add to it its own

behavior – which prints the value of loadWeight.

We can do the same thing with class car.

public void showInfo() {

 super.showInfo();

 System.out.println("The car has "

 + this.numOfSeats + " seats.");

}

Now, to test the polymorphic behavior, we will create 3 objects, each of different type of Vehicle:

class Lesson1Array {

 public static void main(String[] args) {

 Vehicle vehicle1, vehicle2, vehicle3;

 vehicle1 = new Vehicle(50,2);

 vehicle2 = new Car(50,2,4);

 vehicle3 = new Truck(40,2,500);

 System.out.println("Vehicle 1 info:");

 vehicle1.showInfo();

 System.out.println("\nVehicle 2 info:");

 vehicle2.showInfo();

Android ATC © 2013 25

 System.out.println("\nVehicle 3 info:");

 vehicle3.showInfo();

 }

}

Once we run this class, we have three different output statements.

Vehicle 1 info:

The vehicle has a speed of: 50 and at gear 2

Vehicle 2 info:

The vehicle has a speed of: 50 and at gear 2

The car has 4 seats.

Vehicle 3 info:

The vehicle has a speed of: 40 and at gear 2

The truck has is carrying a load of: 500

In the above example, JVM has called each object’s method instead of calling Vehicle’s object for

all three objects.

Android ATC © 2013 26

Lab 2

Objectives Implement parent-child relationship in Java

 Understand method overriding

 Understand method overloading

Pre-requisites

You need to create a new Java project under Eclipse

before solving these exercises. Follow the steps

detailed in Lesson 1 of this book.

Android ATC © 2013 27

Exercise

Create a Java project made up of two classes and one interface: Parent class that implements the
interface, and Child class which extends Parent. Override a method in Parent, and overload
another one in Child.

 Create a new Java project under Eclipse

a. Follow the steps to create a new project as explained in section “Creating a Java

project” of Lab 1.

 Create a Java package

a. In the Navigator view to the left of you Eclipse editor, right click on folder src

b. In menu that shows up, point to New, and then choose Package.

c. In the “New Java Package” dialog, type in the field Name the following:

com.androidatc.lesson2

d. Click on Finish

Android ATC © 2013 28

 Create two Java classes to write your code in

a. In the Navigator view to the left of you Eclipse editor, right click on folder src.

b. From the menu that shows up, point to New, and then click on Class

c. In the “New Java Class” Dialog, type Parent in field Name

d. Click Finish

e. Repeat steps a to d, but in step c type Child in field Name

 Create a Java interface

a. In the Navigator view to the left of you Eclipse editor, right click on folder src

b. From the menu that shows up, point to New, and then click on Interface

Android ATC © 2013 29

c. In the “New Java Interface” Dialog, type IParent in field Name

d. Click Finish

 Write the Java code to solve the exercise

a. Open file Parent.java

b. Type in it the following code

package com.androidatc.lesson1;

public class Parent implements IParent {

 public void firstMethod(int i) {

 }

 public void secondMethod(int i) {

 }

}

c. Open file Child.java

d. Type in the following code

package com.androidatc.lesson1;

public class Child extends Parent{

 public void firstMethod(int i) {

 }

 public void thirdMethod(int i) {

 }

 public void thirdMethod(int i, int n) {

 }

}

e. Open file IParent.java

f. Type in the following code

package com.androidatc.lesson1;

public interface IParent {

 void secondMethod(int i);

}

Method firstMethod() in class Child overrides method firstMethod() of

class Parent.

Method thirdMehod() in class Child is overloaded.

Android ATC © 2013 30

Lesson 3: More Java Programming

Introduction

After covering the basic object oriented programming principles in the previous lesson, this

lesson will cover additional topics you would probably face during Java coding.

Exceptions

Handling errors is an essential part of writing a robust code. Java uses exceptions to handle

errors. This section explains exceptions and how to use them.

When an error occurs, the Java runtime environment handles an error object that is created by

the method where the error occurs. This object is called exception, and contains basic

information about the error (like the type of the error, the location, the stack of methods that lead

to the error…etc.). The process of creating an exception object and handling it by the system is

called throwing an exception.

The list of methods that lead to the error is called “the call stack”. When handling the error, the

system searches through that stack to find an error handler in the code; i.e. exception handler. All

exception objects are children of the parent class Exception. The different types or errors

thrown are children of class Exception.

Exceptions in Java can be categorized into three types:

Exception Category Description

Checked Exception These are errors inside the application’s code and a

programmer who intends to create a robust well-written code

is expected to recover from these errors. For example, reading

from a file on the disk, a programmer should expect is non-

existent. In this case, the programmer should expect a

java.io.FileNotFoundException, thrown, and thereafter

catch this exception and notify the user of a proper action.

Unchecked Exception These come in two types themselves: Errors and Runtime

exceptions. They are grouped in one category because both

cannot be anticipated or recover from by a programmer.

Errors are external to the applications. For example, suppose

that an application successfully opens a file for input, but is

Android ATC © 2013 31

unable to read the file because of a hardware or system

malfunction. The unsuccessful read will throw

java.io.IOError, and it makes sense for the program to

print a stack trace and exit. Errors are those exceptions of type

Error class and its sub-classes.

Runtime exceptions usually indicate programming bugs such

as logic errors. They are or type RuntimeException class and

its subclasses.

Handling errors (exceptions) in Java is done through the try-catch-finally blocks. While the

finally block is optional, the try and catch are obligatory to fulfill error handling.

Let’s look at the following code:

1. public class AndroidATCLesson3 {

2. public static void main(String[] args) {

3. System.out.println("Hello World from Android ATC!");

4. String nullString = null;

5. System.out.println("Entered try statement");

6. String partialString = nullString.substring(1);

7. // Execution will break before reaching this line

8. System.out.println("Partial string is: " + partialString);

9. }

10. }

Running the code above will result in an error thrown of type NullPointerException, specifically

at line 6, where we are trying to read from a string object that is null (not initialized)

To properly handle this error, we should modify the above code to become:

1. public class AndroidATCLesson3 {

2. public static void main(String[] args) {

3. System.out.println("Hello World from Android ATC!");

4. String nullString = null;

5. try {

6. System.out.println("Entered try statement");

7. String partialString = nullString.substring(1);

8. // Execution will continue in the exception block

9. System.out.println("Partial string is: "+partialString);

Android ATC © 2013 32

10. } catch (Exception e) {

11. System.out.println("Error occured: "+e.getMessage());

12. e.printStackTrace();

13. }

14. }

15. }

Instead of breaking the code execution and halting the program, this code will handle the

NullPointerException properly by printing the error details and continuing execution past the

catch block.

The finally block can be used after the exception block. This block of code will always run

whether there is an exception thrown or not.

try {

 System.out.println("Entered try statement");

 String partialString = nullString.substring(1);

 // Execution will break before reaching this line

 System.out.println("Partial string is: " + partialString);

} catch (Exception e) {

 System.out.println("Error occured: "+e.getMessage());

 e.printStackTrace();

} finally {

 System.out.println("This line of code will always run!");

}

We use finally block in many cases where there is some resources that need be freed but an

exception might prevent us from doing so. For example, when reading from a file, a well written

program should close the file after finishing reading and/or writing into it. If an exception was

thrown, the line of code that closes the file might be skipped. The finally block would be the best

place to close the file in.

Java Collections

Java provides a set of classes and interfaces to help developers handle a collection of objects.

These collection classes similar to an array, except their size can grow dynamically during run

time. This section will provide an overview of some of the more popular Java collection classes.

Android ATC © 2013 33

Interfaces

Java collections are mainly located in package java.util. It provides two main Interfaces:

Collection and Map. These two are the core of the Java Collection framework. Other interfaces

inherit from these two. For example, the List and Set interfaces inherit from Collection interface.

All of these interfaces are generic; i.e. the type of the object contained in the collection should be

specified by the programmer. There is a main difference between subclasses of Collection

interface and those of Map interface.

The collection contains a group of objects that can be manipulated and passed around. The

elements can be duplicated or unique, depending on the type of sub-class. For example, a Set

only contains unique objects.

The Map interface, however, maps keys to values and cannot contain duplicate keys and each key

can only map one value at most.

Implementations

Implementations are the data objects used to store collections, which implement the previous

section. This lesson describes the following implementations:

ArrayList

An Arraylist is a resizable-array implementation of the List interface. It implements all optional

list operations, and permits all elements, including null. It also provides methods to manipulate

the size of the array that is used internally to store the list.

import java.util.*;

class TestArrayList {

 public static void main(String args[]) {

 // Creating an array list

 ArrayList<String> androids = new ArrayList<String>();

 // Adding elements

 androids.add("Cupcake");

 androids.add("Donut");

 androids.add("Eclair");

 androids.add("Froyo");

 androids.add("Gingerbread");

 androids.add("Honeycomb");

 androids.add("Ice Cream Sandwich");

 androids.add("Jelly Bean");

 System.out.println("Size of ArrayList: " + androids.size());

 // Display the contents of the array list

 System.out.println("The ArrayList has the following elements: "

 + androids);

 // Remove elements from the array list

Android ATC © 2013 34

 System.out.println("Deleting second element...");

 androids.remove(3);

 System.out.println("Size after deletions: " + androids.size());

 System.out.println("Contents after deletions: " + androids);

 }

}

The following is the output of the program:

Size of ArrayList: 8

The ArrayList has the following elements: [Cupcake, Donut, Eclair, Froyo,

Gingerbread, Honeycomb, Ice Cream Sandwich, Jelly Bean]

Deleting second element...

Size after deletions: 7

Contents after deletions: [Cupcake, Donut, Eclair, Gingerbread, Honeycomb,

Ice Cream Sandwich, Jelly Bean]

HashSet

This class implements the Set interface and permits the null element. This collection does not

allow duplicates. It creates a collection that uses a hash table for storage. A hash table stores

information by using a mechanism called hashing where the value stored is used to determine a

unique key, which is used as the index at which the data is stored. The advantage of hashing is

that it allows fast execution times for basic operations, like add() and remove().

The following is an example of HashSet.

class TestHashSet {

 public static void main(String args[]) {

 // Creating a HashSet

 HashSet<String> androids = new HashSet<String>();

 // Adding elements

 androids.add("Cupcake");

 androids.add("Cupcake");

 androids.add("Eclair");

 androids.add("Eclair");

 androids.add("Gingerbread");

 androids.add("Honeycomb");

 androids.add("Ice Cream Sandwich");

 androids.add("Jelly Bean");

Android ATC © 2013 35

 System.out.println("The contents of the HashSet: "+androids);

 }

}

The output of the program is:

The contents of the HashSet: [Eclair, Cupcake, Honeycomb, Ice Cream Sandwich,

Jelly Bean, Gingerbread]

Notice that there is one “Cupcake” element and one “Éclair” element in the HashSet although

each was added twice in the code.

HashMap

This is a hash table based implementation of the Map interface. It allows null elements and does

not add any methods of its own.

The following program illustrates HashMap. It maps names to account balances.

import java.util.*;

class TestHashMap {

 public static void main(String args[]) {

 // Creating a HashMap

 HashMap<String,Double> androids = new HashMap<String,Double>();

 // Adding elements

 androids.put("Cupcake", new Double(1.5));

 androids.put("Donut",new Double(1.6));

 androids.put("Eclair", new Double(2.1));

 androids.put("Froyo", new Double(2.2));

 androids.put("Gingerbread", new Double(2.3));

 androids.put("Honeycomb", new Double(3.1));

 androids.put("Ice Cream Sandwich", new Double(4.0));

 androids.put("Jelly Bean", new Double(4.1));

 // Get a set of the entries

 Set<Map.Entry<String, Double>> set = androids.entrySet();

 // Get an iterator

 Iterator<Map.Entry<String, Double>> i = set.iterator();

 // Display elements

 while (i.hasNext()) {

 Map.Entry<String, Double> me = (Map.Entry<String,Double>)

 i.next();

Android ATC © 2013 36

 System.out.print(me.getKey() + ": ");

 System.out.println(me.getValue());

 }

 System.out.println();

 // Increase version number of Eclair

 Double version = androids.get("Eclair");

 androids.put("Eclair", new Double(version + 0.1));

 System.out.println("New version number of Eclair: "

 + androids.get("Eclair"));

 }

}

The output of the program is:

Eclair: 2.1

Cupcake: 1.5

Honeycomb: 3.1

Froyo: 2.2

Donut: 1.6

Ice Cream Sandwich: 4.0

Jelly Bean: 4.1

Gingerbread: 2.3

New version number of Eclair: 2.2

Android ATC © 2013 37

Lab 3

Objectives Write code that uses ArrayList methods.

 Read strings from a file

 Learning the benefits of the Set collection.

Pre-requisites

You need to create a new Java project under Eclipse

before solving these exercises. Follow the steps

detailed in Lesson 1 of this book.

Android ATC © 2013 38

Exercise

Write a program that saves ten strings in an ArrayList. The strings have the following format:

“Element – X”, where X is a number between 1 and 10. Demonstrate the usage of methods:

add(), remove(), and indexOf().

 Create a new Java project under Eclipse

a. Follow the steps to create a new project as explained in section “Creating a Java

project” of Lab 1

 Create a Java package

a. In the Navigator view to the left of you Eclipse editor, right click on folder src

b. In menu that shows up, point to New, and then choose Package.

c. In the “New Java Package” dialog, type in the field Name the following:

com.androidatc.lesson3

d. Click on Finish

Android ATC © 2013 39

 Create a Java class to write your code in

a. In the Navigator view to the left of you Eclipse editor, right click on folder src.

b. From the menu that shows up, point to New, and then click on Class

c. In the “New Java Class” Dialog, type Exercise3 in field Name, click the checkbox

next to “public static void main(String[] args)”

d. Click on Finish

Android ATC © 2013 40

 Write the Java code to solve the exercise

a. Open file Exercise3.java

b. Type inside method main() the following code:

ArrayList<String> arrayList = new ArrayList<String>();

for (int i = 1; i <= 10; i++) {

 arrayList.add("Element - " + i);

}

System.out.println("Index of Element 6: " +arrayList.indexOf("Element - 6"));

arrayList.remove(4);

System.out.println("Index of Element 6: "+ arrayList.indexOf("Element - 6"));

 Run your Java program

a. Right-click on the project name under the Navigator pane.

b. In the Menu that shows up, point to “Run As”, then click on Java Application

Android ATC © 2013 41

 Check the console view.

You should see the desired output.

Android ATC © 2013 42

Lesson 4: Java Topics

Introduction

This lesson will delve into another set of OOP features and Java-specific topics.

Nested Classes

Using Java, you can define a class within another class. These are called nested classes:

class OuterClass {

 ...

 class NestedClass {

 ...

 }

}

Nested classes can be static and called static inner classes.

class OuterClass {

 ...

 static class StaticInnerClass {

 ...

 }

 class InnerClass {

 ...

 }

}

A nested class is a member of its enclosing class. Non-static inner classes have access to other

members of the outer class, even if they are declared private. However, static inner classes do

not. Similar to member variables and methods, an inner class can be

declared private, public, protected, or package private.

Benefits of inner classes

The following are some reasons that tempt a programmer to use inner classes:

 Improve logical grouping of classes that are only used in one place. If a class B is

useful to only one other Class A, then it is logical to make class B an inner class of class A.

Android ATC © 2013 43

 Increase encapsulation. If class B needs to access private members of class A, a

programmer can hide class B inside A and keep all members of A private, and at the same

time hide class B from external classes.

 Improve code readability and maintainability. Creating inner classes within an

outer class provides a clearer placement of code.

Class Variables (static)

When we create several objects of the same class, each object (instance) has its own distinct copy

of member variables. Sometimes, we might want a variable that is common to all objects of the

same class. To achieve this we use static modifier.

Member variables that have the static modifier in their declaration are called static

fields or class variables. They are associated with the class, rather than with any object. Every

instance of the class shares a class variable, which is saved in a fixed memory location. Any object

can change the value of a class variable, but class variables can also be manipulated without

creating an instance of the class.

For example, let’s modify the Car class of the previous lesson by adding a class variable. The

member variable numOfSeats might have different values for different objects of type Car.

However, we can add a class variable called numberOfCars which will be used to keep track of

the number of Car objects created.

public class Car extends Vehicle {

 public int numOfSeats;

 // A class variable for the

// number of Car objects created

public static int numberOfCars;

 ...

}

Class variables are referenced by the class name itself to make it clear they are class variables, as
in:

Car.numberOfCars;

You can call static variables with an object variable:
car1.numberOfCars;
 … but this is not recommended since the class variable will look like a regular
member variable.

Android ATC © 2013 44

Class Methods

Java also supports static methods as well as static variables. Static methods, which have

the static modifier in their signature, should be invoked with the class name, without the need

for creating an instance of the class, as in

ClassName.methodName(args)

You can also call static methods with an object reference:

car1.getNumberOfCars();

 … but this is not recommended since the class variable will look like a regular

member variable.

A common use for static methods is to access static fields. For example, let’s modify the Car class

by adding a static method that returns the numOfCars static variable:

 public static int getNumberOfCars(){

 return numberOfCars;

 }

Class methods cannot access instance variables or instance methods directly—they must use an

object reference. Also, class methods cannot use the this keyword as there is no instance

for this to refer to.

Enumerated types

An enumerated type (also called enumeration or enum) is a data type consisting of a set of named

constants called elements or enumerators of the type. The enumerator names behave as

constants in the language. A common example of enumeration is the days of the week. Because

they are constants, the names of an enum type's fields are in uppercase letters.

To define an enum type in Java, we use the enum keyword. For example, the following enum type

defines a set of employee title enumerations:

public enum Title {

 PROJECT_MANAGER,TECHNICAL_LEADER, MANAGING_DIRECTOR, CEO, CFO

}

Android ATC © 2013 45

Enum types should be used whenever a fixed set of constants need to be represented.

Serialization

Serialization is the process of converting an object into a format that can be stored and then

converted back later to an object in the same or another computer environment.

Java provides automatic serialization which requires that the object implement the

java.io.Serializable interface. Java then handles serialization internally.

The following is a Java class called Employee. It is serializable, and has three member variables: a

name, an address and the enumerated type title.

import java.io.Serializable;

public class Employee implements Serializable {

 private String name;

 private String address;

 private Title title;

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public String getAddress() {

 return address;

 }

 public void setAddress(String address) {

 this.address = address;

 }

 public Title getTitle() {

 return title;

 }

 public void setTitle(Title title) {

 this.title = title;

 }

}

Now that we have a serializable object, we can test the serialization process by writing the object

to a file on the disk. The following program writes an Employee object to a file called

employee.ser

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.ObjectOutputStream;

import java.util.ArrayList;

Android ATC © 2013 46

public class SerializeDemo {

 public static void main(String[] args) {

 Employee e = new Employee();

 e.setName("Joe");

 e.setAddress("Main Street, Joeville");

 e.setTitle(Title.PROJECT_MANAGER);

 try {

 FileOutputStream fileOut = new

FileOutputStream("c:\\employee.ser");

 ObjectOutputStream out = new ObjectOutputStream(fileOut);

 out.writeObject(e);

 System.out.println("Serialized...");

 out.close();

 fileOut.close();

 } catch (IOException i) {

 i.printStackTrace();

 }

 }

}

Once you run the program, you can find a file called employee.ser under the C: drive on a

Windows machine.

Deserializing

We can now build an Employee object back from the file we have on disk, using a totally different

program. All we need is to access the saved file employee.ser.

The following DeserializeDemo program deserializes the Employee object created in the previous section.

import java.io.FileInputStream;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.util.ArrayList;

public class DeserializeDemo {

 @SuppressWarnings("unchecked")

 public static void main(String[] args) {

 Employee employee = new Employee();

 try {

 FileInputStream fileIn = new FileInputStream("c:\\employee.ser");

 ObjectInputStream in = new ObjectInputStream(fileIn);

 employee = (Employee) in.readObject();

 in.close();

 fileIn.close();

 } catch (IOException i) {

 i.printStackTrace();

 return;

 } catch (ClassNotFoundException c) {

 System.out.println("Employee class not found.");

 c.printStackTrace();

 return;

 } finally {

 }

 if (employee instanceof Employee) {

Android ATC © 2013 47

 System.out.println("-----------------------");

 System.out.println("Deserialized Employee object...");

 System.out.println("Name: " + employee.getName());

 System.out.println("Address: " + employee.getAddress());

 System.out.println("Address: " + employee.getTitle());

 System.out.println("-----------------------");

 }

 }

}

Once you run the DeserializeDemo program, you will get the following output:

Deserialized Employee object...

Name: Joe

Address: Main Street, Joeville

Address: PROJECT_MANAGER

Android ATC © 2013 48

Lab 4

Objectives Coding and using static variable and methods

 Creating Enum types

Pre-requisites

You need to create a new Java project under Eclipse

before solving these exercises. Follow the steps

detailed in Lesson 1 of this book.

Android ATC © 2013 49

Exercise

Create a Java class that represents a Football object. Each football is defined by three member

variables: volume, weight and color (where color is only limited to three values: black, white, and

blue). Also, add to the class one static variable and one static method that accesses the static

variable.

 Create a new Java project under Eclipse

a. Follow the steps to create a new project as explained in section “Creating a Java

project” of Lab 1

 Create a Java package

a. In the Navigator view to the left of you Eclipse editor, right click on folder src

b. In menu that shows up, point to New, and then choose Package.

c. In the “New Java Package” dialog, type in the field Name the following:

com.androidatc.lesson4

d. Click on Finish

Android ATC © 2013 50

 Create the Football class

a. In the Navigator view to the left of you Eclipse editor, right click on folder src.

b. From the menu that shows up, point to New, and then click on Class

c. In the “New Java Class” Dialog, type Football in field Name.

d. Click on Finish

 Create Color Enum type

a. In the Navigator view to the left of you Eclipse editor, right click on folder src

b. In menu that shows up, point to New, and then choose Enum.

Android ATC © 2013 51

c. In the “New Enum Type” dialog, type Color in the field Name.

d. Click on Finish

 Write the Java code to solve the exercise

a. Open file Football.java

b. Type in it the following code:

package com.androidatc.lesson4;

public class Football {

 private float volume;

 private float weight;

 private Color color;

 public static int numOfBalls = 0;

 public Football() {

 volume = 10;

 weight = 5;

 color = Color.WHITE;

 }

 public static int getNumOfBalls() {

 return numOfBalls;

 }

 public static void setNumOfBalls(int numOfBalls) {

 Football.numOfBalls = numOfBalls;

 }

 public float getVolume() {

 return volume;

 }

 public void setVolume(float volume) {

 this.volume = volume;

 }

 public float getWeight() {

Android ATC © 2013 52

 return weight;

 }

 public void setWeight(float weight) {

 this.weight = weight;

 }

 public Color getColor() {

 return color;

 }

 public void setColor(Color color) {

 this.color = color;

 }

}

c. Open file Color.java

d. Type in the following code:

package com.androidatc.lesson4;

public enum Color {

 BLACK,WHITE,BLUE

}

	Java Fundamentals for Android Development Cover.pdf
	1.pdf

